Atiyah–Hirzebruch spectral sequence

In mathematics, the Atiyah–Hirzebruch spectral sequence is a spectral sequence for calculating generalized cohomology, introduced by Michael Atiyah and Friedrich Hirzebruch (1961) in the special case of topological K-theory. For a CW complex X {\displaystyle X} and a generalized cohomology theory E {\displaystyle E^{\bullet }} , it relates the generalized cohomology groups

E i ( X ) {\displaystyle E^{i}(X)}

with 'ordinary' cohomology groups H j {\displaystyle H^{j}} with coefficients in the generalized cohomology of a point. More precisely, the E 2 {\displaystyle E_{2}} term of the spectral sequence is H p ( X ; E q ( p t ) ) {\displaystyle H^{p}(X;E^{q}(pt))} , and the spectral sequence converges conditionally to E p + q ( X ) {\displaystyle E^{p+q}(X)} .

Atiyah and Hirzebruch pointed out a generalization of their spectral sequence that also generalizes the Serre spectral sequence, and reduces to it in the case where E = H Sing {\displaystyle E=H_{\text{Sing}}} . It can be derived from an exact couple that gives the E 1 {\displaystyle E_{1}} page of the Serre spectral sequence, except with the ordinary cohomology groups replaced with E {\displaystyle E} . In detail, assume X {\displaystyle X} to be the total space of a Serre fibration with fibre F {\displaystyle F} and base space B {\displaystyle B} . The filtration of B {\displaystyle B} by its n {\displaystyle n} -skeletons B n {\displaystyle B_{n}} gives rise to a filtration of X {\displaystyle X} . There is a corresponding spectral sequence with E 2 {\displaystyle E_{2}} term

H p ( B ; E q ( F ) ) {\displaystyle H^{p}(B;E^{q}(F))}

and converging to the associated graded ring of the filtered ring

E p , q E p + q ( X ) {\displaystyle E_{\infty }^{p,q}\Rightarrow E^{p+q}(X)} .

This is the Atiyah–Hirzebruch spectral sequence in the case where the fibre F {\displaystyle F} is a point.

Examples

Topological K-theory

For example, the complex topological K {\displaystyle K} -theory of a point is

K U ( ) = Z [ x , x 1 ] {\displaystyle KU(*)=\mathbb {Z} [x,x^{-1}]} where x {\displaystyle x} is in degree 2 {\displaystyle 2}

By definition, the terms on the E 2 {\displaystyle E_{2}} -page of a finite CW-complex X {\displaystyle X} look like

E 2 p , q ( X ) = H p ( X ; K U q ( p t ) ) {\displaystyle E_{2}^{p,q}(X)=H^{p}(X;KU^{q}(pt))}

Since the K {\displaystyle K} -theory of a point is

K q ( p t ) = { Z if q is even 0 otherwise {\displaystyle K^{q}(pt)={\begin{cases}\mathbb {Z} &{\text{if q is even}}\\0&{\text{otherwise}}\end{cases}}}

we can always guarantee that

E 2 p , 2 k + 1 ( X ) = 0 {\displaystyle E_{2}^{p,2k+1}(X)=0}

This implies that the spectral sequence collapses on E 2 {\displaystyle E_{2}} for many spaces. This can be checked on every C P n {\displaystyle \mathbb {CP} ^{n}} , algebraic curves, or spaces with non-zero cohomology in even degrees. Therefore, it collapses for all (complex) even dimensional smooth complete intersections in C P n {\displaystyle \mathbb {CP} ^{n}} .

Cotangent bundle on a circle

For example, consider the cotangent bundle of S 1 {\displaystyle S^{1}} . This is a fiber bundle with fiber R {\displaystyle \mathbb {R} } so the E 2 {\displaystyle E_{2}} -page reads as

2 H 0 ( S 1 ; Q ) H 1 ( S 1 ; Q ) 1 0 0 0 H 0 ( S 1 ; Q ) H 1 ( S 1 ; Q ) 1 0 0 2 H 0 ( S 1 ; Q ) H 1 ( S 1 ; Q ) 0 1 {\displaystyle {\begin{array}{c|cc}\vdots &\vdots &\vdots \\2&H^{0}(S^{1};\mathbb {Q} )&H^{1}(S^{1};\mathbb {Q} )\\1&0&0\\0&H^{0}(S^{1};\mathbb {Q} )&H^{1}(S^{1};\mathbb {Q} )\\-1&0&0\\-2&H^{0}(S^{1};\mathbb {Q} )&H^{1}(S^{1};\mathbb {Q} )\\\vdots &\vdots &\vdots \\\hline &0&1\end{array}}}

Differentials

The odd-dimensional differentials of the AHSS for complex topological K-theory can be readily computed. For d 3 {\displaystyle d_{3}} it is the Steenrod square S q 3 {\displaystyle Sq^{3}} where we take it as the composition

β S q 2 r {\displaystyle \beta \circ Sq^{2}\circ r}

where r {\displaystyle r} is reduction mod 2 {\displaystyle 2} and β {\displaystyle \beta } is the Bockstein homomorphism (connecting morphism) from the short exact sequence

0 Z Z Z / 2 0 {\displaystyle 0\to \mathbb {Z} \to \mathbb {Z} \to \mathbb {Z} /2\to 0}

Complete intersection 3-fold

Consider a smooth complete intersection 3-fold X {\displaystyle X} (such as a complete intersection Calabi-Yau 3-fold). If we look at the E 2 {\displaystyle E_{2}} -page of the spectral sequence

2 H 0 ( X ; Z ) 0 H 2 ( X ; Z ) H 3 ( X ; Z ) H 4 ( X ; Z ) 0 H 6 ( X ; Z ) 1 0 0 0 0 0 0 0 0 H 0 ( X ; Z ) 0 H 2 ( X ; Z ) H 3 ( X ; Z ) H 4 ( X ; Z ) 0 H 6 ( X ; Z ) 1 0 0 0 0 0 0 0 2 H 0 ( X ; Z ) 0 H 2 ( X ; Z ) H 3 ( X ; Z ) H 4 ( X ; Z ) 0 H 6 ( X ; Z ) 0 1 2 3 4 5 6 {\displaystyle {\begin{array}{c|ccccc}\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\2&H^{0}(X;\mathbb {Z} )&0&H^{2}(X;\mathbb {Z} )&H^{3}(X;\mathbb {Z} )&H^{4}(X;\mathbb {Z} )&0&H^{6}(X;\mathbb {Z} )\\1&0&0&0&0&0&0&0\\0&H^{0}(X;\mathbb {Z} )&0&H^{2}(X;\mathbb {Z} )&H^{3}(X;\mathbb {Z} )&H^{4}(X;\mathbb {Z} )&0&H^{6}(X;\mathbb {Z} )\\-1&0&0&0&0&0&0&0\\-2&H^{0}(X;\mathbb {Z} )&0&H^{2}(X;\mathbb {Z} )&H^{3}(X;\mathbb {Z} )&H^{4}(X;\mathbb {Z} )&0&H^{6}(X;\mathbb {Z} )\\\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\\hline &0&1&2&3&4&5&6\end{array}}}

we can see immediately that the only potentially non-trivial differentials are

d 3 : E 3 0 , 2 k E 3 3 , 2 k 2 d 3 : E 3 3 , 2 k E 3 6 , 2 k 2 {\displaystyle {\begin{aligned}d_{3}:E_{3}^{0,2k}\to E_{3}^{3,2k-2}\\d_{3}:E_{3}^{3,2k}\to E_{3}^{6,2k-2}\end{aligned}}}

It turns out that these differentials vanish in both cases, hence E 2 = E {\displaystyle E_{2}=E_{\infty }} . In the first case, since S q k : H i ( X ; Z / 2 ) H k + i ( X ; Z / 2 ) {\displaystyle Sq^{k}:H^{i}(X;\mathbb {Z} /2)\to H^{k+i}(X;\mathbb {Z} /2)} is trivial for k > i {\displaystyle k>i} we have the first set of differentials are zero. The second set are trivial because S q 2 {\displaystyle Sq^{2}} sends H 3 ( X ; Z / 2 ) H 5 ( X ) = 0 {\displaystyle H^{3}(X;\mathbb {Z} /2)\to H^{5}(X)=0} the identification S q 3 = β S q 2 r {\displaystyle Sq^{3}=\beta \circ Sq^{2}\circ r} shows the differential is trivial.

Twisted K-theory

The Atiyah–Hirzebruch spectral sequence can be used to compute twisted K-theory groups as well. In short, twisted K-theory is the group completion of the isomorphism classes of vector bundles defined by gluing data ( U i j , g i j ) {\displaystyle (U_{ij},g_{ij})} where

g i j g j k g k i = λ i j k {\displaystyle g_{ij}g_{jk}g_{ki}=\lambda _{ijk}}

for some cohomology class λ H 3 ( X , Z ) {\displaystyle \lambda \in H^{3}(X,\mathbb {Z} )} . Then, the spectral sequence reads as

E 2 p , q = H p ( X ; K U q ( ) ) K U λ p + q ( X ) {\displaystyle E_{2}^{p,q}=H^{p}(X;KU^{q}(*))\Rightarrow KU_{\lambda }^{p+q}(X)}

but with different differentials. For example,

E 3 p , q = E 2 p , q = 2 H 0 ( S 3 ; Z ) 0 0 H 3 ( S 3 ; Z ) 1 0 0 0 0 0 H 0 ( S 3 ; Z ) 0 0 H 3 ( S 3 ; Z ) 1 0 0 0 0 2 H 0 ( S 3 ; Z ) 0 0 H 3 ( S 3 ; Z ) 0 1 2 3 {\displaystyle E_{3}^{p,q}=E_{2}^{p,q}={\begin{array}{c|cccc}\vdots &\vdots &\vdots &\vdots &\vdots \\2&H^{0}(S^{3};\mathbb {Z} )&0&0&H^{3}(S^{3};\mathbb {Z} )\\1&0&0&0&0\\0&H^{0}(S^{3};\mathbb {Z} )&0&0&H^{3}(S^{3};\mathbb {Z} )\\-1&0&0&0&0\\-2&H^{0}(S^{3};\mathbb {Z} )&0&0&H^{3}(S^{3};\mathbb {Z} )\\\vdots &\vdots &\vdots &\vdots &\vdots \\\hline &0&1&2&3\end{array}}}

On the E 3 {\displaystyle E_{3}} -page the differential is

d 3 = S q 3 + λ {\displaystyle d_{3}=Sq^{3}+\lambda }

Higher odd-dimensional differentials d 2 k + 1 {\displaystyle d_{2k+1}} are given by Massey products for twisted K-theory tensored by R {\displaystyle \mathbb {R} } . So

d 5 = { λ , λ , } d 7 = { λ , λ , λ , } {\displaystyle {\begin{aligned}d_{5}&=\{\lambda ,\lambda ,-\}\\d_{7}&=\{\lambda ,\lambda ,\lambda ,-\}\end{aligned}}}

Note that if the underlying space is formal, meaning its rational homotopy type is determined by its rational cohomology, hence has vanishing Massey products, then the odd-dimensional differentials are zero. Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan proved this for all compact Kähler manifolds, hence E = E 4 {\displaystyle E_{\infty }=E_{4}} in this case. In particular, this includes all smooth projective varieties.

Twisted K-theory of 3-sphere

The twisted K-theory for S 3 {\displaystyle S^{3}} can be readily computed. First of all, since S q 3 = β S q 2 r {\displaystyle Sq^{3}=\beta \circ Sq^{2}\circ r} and H 2 ( S 3 ) = 0 {\displaystyle H^{2}(S^{3})=0} , we have that the differential on the E 3 {\displaystyle E_{3}} -page is just cupping with the class given by λ {\displaystyle \lambda } . This gives the computation

K U λ k = { Z k  is even Z / λ k  is odd {\displaystyle KU_{\lambda }^{k}={\begin{cases}\mathbb {Z} &k{\text{ is even}}\\\mathbb {Z} /\lambda &k{\text{ is odd}}\end{cases}}}

Rational bordism

Recall that the rational bordism group Ω SO Q {\displaystyle \Omega _{*}^{\text{SO}}\otimes \mathbb {Q} } is isomorphic to the ring

Q [ [ C P 0 ] , [ C P 2 ] , [ C P 4 ] , [ C P 6 ] , ] {\displaystyle \mathbb {Q} [[\mathbb {CP} ^{0}],[\mathbb {CP} ^{2}],[\mathbb {CP} ^{4}],[\mathbb {CP} ^{6}],\ldots ]}

generated by the bordism classes of the (complex) even dimensional projective spaces [ C P 2 k ] {\displaystyle [\mathbb {CP} ^{2k}]} in degree 4 k {\displaystyle 4k} . This gives a computationally tractable spectral sequence for computing the rational bordism groups.

Complex cobordism

Recall that M U ( p t ) = Z [ x 1 , x 2 , ] {\displaystyle MU^{*}(pt)=\mathbb {Z} [x_{1},x_{2},\ldots ]} where x i π 2 i ( M U ) {\displaystyle x_{i}\in \pi _{2i}(MU)} . Then, we can use this to compute the complex cobordism of a space X {\displaystyle X} via the spectral sequence. We have the E 2 {\displaystyle E_{2}} -page given by

E 2 p , q = H p ( X ; M U q ( p t ) ) {\displaystyle E_{2}^{p,q}=H^{p}(X;MU^{q}(pt))}

See also

References

  • Davis, James; Kirk, Paul, Lecture Notes in Algebraic Topology (PDF), archived from the original (PDF) on 2016-03-04, retrieved 2017-08-12
  • Atiyah, Michael Francis; Hirzebruch, Friedrich (1961), "Vector bundles and homogeneous spaces", Proc. Sympos. Pure Math., Vol. III, Providence, R.I.: American Mathematical Society, pp. 7–38, MR 0139181
  • Atiyah, Michael, Twisted K-Theory and cohomology, arXiv:math/0510674, Bibcode:2005math.....10674A