Seznam integrálů logaritmických funkcí

Seznamy integrálů
  • logaritmické funkce

Toto je seznam integrálů (primitivních funkcí) logaritmických funkcí.

Poznámka: V následujících integrálech se předpokládá, že x>0.

ln c x d x = x ln ( c x ) x {\displaystyle \int \ln cx\,\,\mathrm {d} x=x\ln(cx)-x}
( ln x ) 2 d x = x ( ln x ) 2 2 x ln x + 2 x {\displaystyle \int (\ln x)^{2}\;\,\mathrm {d} x=x(\ln x)^{2}-2x\ln x+2x}
( ln c x ) n d x = x ( ln c x ) n n ( ln c x ) n 1 d x {\displaystyle \int (\ln cx)^{n}\;\,\mathrm {d} x=x(\ln cx)^{n}-n\int (\ln cx)^{n-1}\,\mathrm {d} x}
d x ln x = ln | ln x | + ln x + i = 2 ( ln x ) i i i ! {\displaystyle \int {\frac {\,\mathrm {d} x}{\ln x}}=\ln |\ln x|+\ln x+\sum _{i=2}^{\infty }{\frac {(\ln x)^{i}}{i\cdot i!}}}
d x ( ln x ) n = x ( n 1 ) ( ln x ) n 1 + 1 n 1 d x ( ln x ) n 1 (pro  n 1 ) {\displaystyle \int {\frac {\,\mathrm {d} x}{(\ln x)^{n}}}=-{\frac {x}{(n-1)(\ln x)^{n-1}}}+{\frac {1}{n-1}}\int {\frac {\,\mathrm {d} x}{(\ln x)^{n-1}}}\qquad {\mbox{(pro }}n\neq 1{\mbox{)}}}
x m ln x d x = x m + 1 ( ln x m + 1 1 ( m + 1 ) 2 ) (pro  m 1 ) {\displaystyle \int x^{m}\ln x\;\,\mathrm {d} x=x^{m+1}\left({\frac {\ln x}{m+1}}-{\frac {1}{(m+1)^{2}}}\right)\qquad {\mbox{(pro }}m\neq -1{\mbox{)}}}
x m ( ln x ) n d x = x m + 1 ( ln x ) n m + 1 n m + 1 x m ( ln x ) n 1 d x (pro  m 1 ) {\displaystyle \int x^{m}(\ln x)^{n}\;\,\mathrm {d} x={\frac {x^{m+1}(\ln x)^{n}}{m+1}}-{\frac {n}{m+1}}\int x^{m}(\ln x)^{n-1}\,\mathrm {d} x\qquad {\mbox{(pro }}m\neq -1{\mbox{)}}}
( ln x ) n d x x = ( ln x ) n + 1 n + 1 (pro  n 1 ) {\displaystyle \int {\frac {(\ln x)^{n}\;\,\mathrm {d} x}{x}}={\frac {(\ln x)^{n+1}}{n+1}}\qquad {\mbox{(pro }}n\neq -1{\mbox{)}}}
ln x d x x m = ln x ( m 1 ) x m 1 1 ( m 1 ) 2 x m 1 (pro  m 1 ) {\displaystyle \int {\frac {\ln x\,\,\mathrm {d} x}{x^{m}}}=-{\frac {\ln x}{(m-1)x^{m-1}}}-{\frac {1}{(m-1)^{2}x^{m-1}}}\qquad {\mbox{(pro }}m\neq 1{\mbox{)}}}
( ln x ) n d x x m = ( ln x ) n ( m 1 ) x m 1 + n m 1 ( ln x ) n 1 d x x m (pro  m 1 ) {\displaystyle \int {\frac {(\ln x)^{n}\;\,\mathrm {d} x}{x^{m}}}=-{\frac {(\ln x)^{n}}{(m-1)x^{m-1}}}+{\frac {n}{m-1}}\int {\frac {(\ln x)^{n-1}\,\mathrm {d} x}{x^{m}}}\qquad {\mbox{(pro }}m\neq 1{\mbox{)}}}
x m d x ( ln x ) n = x m + 1 ( n 1 ) ( ln x ) n 1 + m + 1 n 1 x m d x ( ln x ) n 1 (pro  n 1 ) {\displaystyle \int {\frac {x^{m}\;\,\mathrm {d} x}{(\ln x)^{n}}}=-{\frac {x^{m+1}}{(n-1)(\ln x)^{n-1}}}+{\frac {m+1}{n-1}}\int {\frac {x^{m}\,\mathrm {d} x}{(\ln x)^{n-1}}}\qquad {\mbox{(pro }}n\neq 1{\mbox{)}}}
d x x ln x = ln | ln x | {\displaystyle \int {\frac {\,\mathrm {d} x}{x\ln x}}=\ln |\ln x|}
d x x n ln x = ln | ln x | + i = 1 ( 1 ) i ( n 1 ) i ( ln x ) i i i ! {\displaystyle \int {\frac {\,\mathrm {d} x}{x^{n}\ln x}}=\ln |\ln x|+\sum _{i=1}^{\infty }(-1)^{i}{\frac {(n-1)^{i}(\ln x)^{i}}{i\cdot i!}}}
d x x ( ln x ) n = 1 ( n 1 ) ( ln x ) n 1 (pro  n 1 ) {\displaystyle \int {\frac {\,\mathrm {d} x}{x(\ln x)^{n}}}=-{\frac {1}{(n-1)(\ln x)^{n-1}}}\qquad {\mbox{(pro }}n\neq 1{\mbox{)}}}
sin ( ln x ) d x = x 2 ( sin ( ln x ) cos ( ln x ) ) {\displaystyle \int \sin(\ln x)\;\,\mathrm {d} x={\frac {x}{2}}(\sin(\ln x)-\cos(\ln x))}
cos ( ln x ) d x = x 2 ( sin ( ln x ) + cos ( ln x ) ) {\displaystyle \int \cos(\ln x)\;\,\mathrm {d} x={\frac {x}{2}}(\sin(\ln x)+\cos(\ln x))}
e x ( x ln x x 1 x ) d x = e x ( x ln x x ln x ) {\displaystyle \int e^{x}(x\ln x-x-{\frac {1}{x}})\;\,\mathrm {d} x=e^{x}(x\ln x-x-\ln x)}