Seznam integrálů exponenciálních funkcí

Seznamy integrálů
  • exponenciální funkce

Toto je seznam integrálů (primitivních funkcí) exponenciálních funkcí.

e c x d x = 1 c e c x {\displaystyle \int e^{cx}\;\mathrm {d} x={\frac {1}{c}}e^{cx}}
a c x d x = 1 c ln a a c x (pro  a > 0 ,   a 1 ) {\displaystyle \int a^{cx}\;\mathrm {d} x={\frac {1}{c\ln a}}a^{cx}\qquad {\mbox{(pro }}a>0,{\mbox{ }}a\neq 1{\mbox{)}}}
x e c x d x = e c x c 2 ( c x 1 ) {\displaystyle \int xe^{cx}\;\mathrm {d} x={\frac {e^{cx}}{c^{2}}}(cx-1)}
x 2 e c x d x = e c x ( x 2 c 2 x c 2 + 2 c 3 ) {\displaystyle \int x^{2}e^{cx}\;\mathrm {d} x=e^{cx}\left({\frac {x^{2}}{c}}-{\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)}
x n e c x d x = 1 c x n e c x n c x n 1 e c x d x {\displaystyle \int x^{n}e^{cx}\;\mathrm {d} x={\frac {1}{c}}x^{n}e^{cx}-{\frac {n}{c}}\int x^{n-1}e^{cx}\mathrm {d} x}
e c x d x x = ln | x | + i = 1 ( c x ) i i i ! {\displaystyle \int {\frac {e^{cx}\;\mathrm {d} x}{x}}=\ln |x|+\sum _{i=1}^{\infty }{\frac {(cx)^{i}}{i\cdot i!}}}
e c x d x x n = 1 n 1 ( e c x x n 1 + c e c x x n 1 d x ) (pro  n 1 ) {\displaystyle \int {\frac {e^{cx}\;\mathrm {d} x}{x^{n}}}={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}}{x^{n-1}}}\,\mathrm {d} x\right)\qquad {\mbox{(pro }}n\neq 1{\mbox{)}}}
e c x ln x d x = 1 c e c x ln | x | Ei ( c x ) {\displaystyle \int e^{cx}\ln x\;\mathrm {d} x={\frac {1}{c}}e^{cx}\ln |x|-\operatorname {Ei} \,(cx)}
e c x sin b x d x = e c x c 2 + b 2 ( c sin b x b cos b x ) {\displaystyle \int e^{cx}\sin bx\;\mathrm {d} x={\frac {e^{cx}}{c^{2}+b^{2}}}(c\sin bx-b\cos bx)}
e c x cos b x d x = e c x c 2 + b 2 ( c cos b x + b sin b x ) {\displaystyle \int e^{cx}\cos bx\;\mathrm {d} x={\frac {e^{cx}}{c^{2}+b^{2}}}(c\cos bx+b\sin bx)}
e c x sin n x d x = e c x sin n 1 x c 2 + n 2 ( c sin x n cos x ) + n ( n 1 ) c 2 + n 2 e c x sin n 2 x d x {\displaystyle \int e^{cx}\sin ^{n}x\;\mathrm {d} x={\frac {e^{cx}\sin ^{n-1}x}{c^{2}+n^{2}}}(c\sin x-n\cos x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\sin ^{n-2}x\;\mathrm {d} x}
e c x cos n x d x = e c x cos n 1 x c 2 + n 2 ( c cos x + n sin x ) + n ( n 1 ) c 2 + n 2 e c x cos n 2 x d x {\displaystyle \int e^{cx}\cos ^{n}x\;\mathrm {d} x={\frac {e^{cx}\cos ^{n-1}x}{c^{2}+n^{2}}}(c\cos x+n\sin x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\cos ^{n-2}x\;\mathrm {d} x}
x e c x 2 d x = 1 2 c e c x 2 {\displaystyle \int xe^{cx^{2}}\;\mathrm {d} x={\frac {1}{2c}}\;e^{cx^{2}}}
1 σ 2 π e ( x μ ) 2 / 2 σ 2 d x = 1 2 σ ( 1 + erf x μ σ 2 ) {\displaystyle \int {1 \over \sigma {\sqrt {2\pi }}}\,e^{-{(x-\mu )^{2}/2\sigma ^{2}}}\;dx={\frac {1}{2\sigma }}(1+{\mbox{erf}}\,{\frac {x-\mu }{\sigma {\sqrt {2}}}})}
e x 2 d x = e x 2 ( j = 0 n 1 c 2 j 1 x 2 j + 1 ) + ( 2 n 1 ) c 2 n 2 e x 2 x 2 n d x platí pro  n > 0 , {\displaystyle \int e^{x^{2}}\,\mathrm {d} x=e^{x^{2}}\left(\sum _{j=0}^{n-1}c_{2j}\,{\frac {1}{x^{2j+1}}}\right)+(2n-1)c_{2n-2}\int {\frac {e^{x^{2}}}{x^{2n}}}\;\mathrm {d} x\quad {\mbox{platí pro }}n>0,}
kde c 2 j = 1 3 5 ( 2 j 1 ) 2 j + 1 = 2 j ! j ! 2 2 j + 1   . {\displaystyle c_{2j}={\frac {1\cdot 3\cdot 5\cdots (2j-1)}{2^{j+1}}}={\frac {2j\,!}{j!\,2^{2j+1}}}\ .}
e a x 2 d x = π a {\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}\,\mathrm {d} x={\sqrt {\pi \over a}}} (Gaussův integrál)
0 x 2 n e x 2 / a 2 d x = π ( 2 n ) ! n ! ( a 2 ) 2 n + 1 {\displaystyle \int _{0}^{\infty }x^{2n}e^{-{x^{2}}/{a^{2}}}\,\mathrm {d} x={\sqrt {\pi }}{(2n)! \over {n!}}{\left({\frac {a}{2}}\right)}^{2n+1}}
0 2 π e x cos θ d θ = 2 π I 0 ( x ) {\displaystyle \int _{0}^{2\pi }e^{x\cos \theta }\mathrm {d} \theta =2\pi I_{0}(x)} ( I 0 {\displaystyle I_{0}} je modifikovaná Besselova funkce prvního druhu)
0 2 π e x cos θ + y sin θ d θ = 2 π I 0 ( x 2 + y 2 ) {\displaystyle \int _{0}^{2\pi }e^{x\cos \theta +y\sin \theta }\mathrm {d} \theta =2\pi I_{0}\left({\sqrt {x^{2}+y^{2}}}\right)}